Cerebral Palsy
The ABC’s of CP

Toni Benton, M.D.
Continuum of Care Project
UNM HSC School of Medicine
April 20, 2006
Cerebral Palsy

Outline

I. Definition
II. Incidence, Epidemiology and Distribution
III. Etiology
IV. Types
V. Medical Management
VI. Psychosocial Issues
VII. Aging
Cerebral Palsy-Definition

- Cerebral palsy is a symptom complex, (not a disease) that has multiple etiologies.

- CP is a disorder of tone, posture or movement due to a lesion in the developing brain.

- Lesion results in paralysis, weakness, incoordination or abnormal movement

- Not contagious, no cure.

- It is static, but it symptoms may change with maturation
Cerebral Palsy

Brain damage
Occurs during developmental period
Motor dysfunction
Not Curable
Non-progressive (static)

Any regression or deterioration of motor or intellectual skills should prompt a search for a degenerative disease

Therapy can help improve function
Cerebral Palsy

- There are 2 major types of CP, depending on location of lesions:
 - Pyramidal (Spastic)
 - Extrapyramidal
- There is overlap of both symptoms and anatomic lesions.
The pyramidal system carries the signal for muscle contraction.

The extrapyramidal system provides regulatory influences on that contraction.
Cerebral Palsy

- Types of brain damage
 - Bleeding
 - Brain malformation
 - Trauma to brain
 - Lack of oxygen
 - Infection
 - Toxins
 - Unknown
Epidemiology

- The overall prevalence of cerebral palsy ranges from 1.5 to 2.5 per 1000 live births.
- The overall prevalence of CP has remained stable since the 1960’s.
- Speculations that the increased survival of the VLBW preemies would cause a rise in the prevalence of CP have proven wrong.
- Likewise the expected decrease in CP as a result of C-section and fetal monitoring has not happened.
- However, the prevalence of the subtypes has changed.
Epidemiology

- Due to the increased survival of very low birth weight preemies, the incidence of spastic diplegia has increased.
- Choreoathetoid CP, due to kernicterus, has decreased.
- Multiple gestation carries an increased risk of CP.
Distribution of the Types of CP

<table>
<thead>
<tr>
<th>Types of Cerebral Palsy</th>
<th>Frequency of Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonspastic (extrapyramidal and mixed types)</td>
<td>23%</td>
</tr>
<tr>
<td>Spastic CP (total)</td>
<td>77%</td>
</tr>
<tr>
<td>Spastic Diplegia</td>
<td>21%</td>
</tr>
<tr>
<td>Spastic Hemiplegia</td>
<td>21%</td>
</tr>
<tr>
<td>Spastic Quadriplegia</td>
<td>23%</td>
</tr>
</tbody>
</table>
Etiology

- CP has multiple etiologies—many are still unknown
- Since CP is not a single entity, recurrence risks depend on the underlying cause.
- If there is a regression in skills, suspect a degenerative disease.
Etiology

- Most causes are \textit{prenatal}- genetic, congenital malformations, metabolic, intrauterine infections, rather than \textit{perinatal} or \textit{postnatal}- birth asphyxia, hemorrhage, infarction, infections, trauma.
Etiology

- Much of the literature of the 1990’s was directed at the controversy re the role of asphyxia in the etiology of CP
 - Asphyxia implies poor gas exchange, low Apgars and neurologic depression during and soon after delivery.
 - Significant asphyxia is accompanied by acidosis.
 - Asphyxia is rarely the cause of CP in the term infant.
Etiology

- In one outcome study of 43,437 **full term** children, 150 had cerebral palsy. Only 9 of these cases were attributable to birth asphyxia.
- 34 had spastic quadriplegia and 71% of those cases had identifiable causes.
 - 53% - congenital disorders
 - 14% - birth asphyxia
 - 8% - CNS infections
Etiology

- Among the children with non quadriplegic cerebral palsy, congenital disorders appeared to account for about 1/3 of the cases, and CNS infections accounted for 5%.

(Wilson and Cooley-2000; Collaborative Perinatal Study of The National Institute of Neurological and Communicative Disorders and Stroke, Naeye, 1989)
Hypoxic Ischemic Encephalopathy (HIE)

- A clinical entity first described in 1976
- Used interchangeably with Neonatal encephalopathy.
- Asphyxia refers to the first minutes after birth (low Apgars and acidosis)
- HIE signs and symptoms persist over hours and days that follow.
Hypoxic Ischemic Encephalopathy (HIE)

3 major lesions arise from HIE

1. Periventricular Leukomalacia (PVL) *Typically seen in the premature infant*
 a. Hemorrhagic PVL
 b. Ischemic PVL

2. Parasagittal Cerebral Injury
 Typically seen in the term infant

3. Selective (Focal) Neuronal Necrosis
 Seen in both term and premature infants
Periventricular Leukomalacia (PVL)

1. Hemorrhagic PVL
 - Hemorrhage is associated with a collection of primitive cells between the ependyma and caudate that are programmed to “melt away” at 32-34 weeks gestation.
 - They contain fragile capillaries that are easily damaged by hypoxia (lack of oxygen) and hypotension (drop in blood pressure).
 - When the blood pressure returns to normal, bleeding occurs because the preemie has underdeveloped autoregulation.
Periventricular Leukomalacia (PVL)

1. Hemorrhagic PVL (cont.)
 - This bleeding may then rupture into the ventricle and/or parenchyma
 - Periventricular venous congestion (swelling) may then occur, and cause ischemia (lack of blood supply) and periventricular hemorrhagic infarction.
Periventricular Leukomalacia (PVL)

2. Ischemic PVL

- An ischemic infarction or failure of perfusion usually to the watershed area surrounding the ventricular horns- "HIE white matter necrosis".
- Peak incidence occurs around 32 weeks
- Larger infarcts may leave a cyst
- Secondary hemorrhage can occur into these cysts- "periventricular hemorrhage".
Periventricular leukomalacia
Periventricular Leukomalacia (PVL)

2. Ischemic PVL

- PVL can extend into the internal capsule and result in hemiplegia superimposed on diplegia.

- Prenatal maternal ultrasound has detected lesions in the fetus at 28-32 weeks gestation, thus confirming that PVL can occur prenatally.
Internal Capsule
Parasaggital Cerebral Injury

- Injury is related to vascular factors, especially in the parasaggital border zones that are more vulnerable to a drop in perfusion pressure and immature autoregulation.
- The ischemic lesion results in cortical and subcortical white matter injury.
- It is usually bilateral and symmetric.
- The posterior aspect of the cerebral hemisphere especially the parietal occipital regions is more affected than the anterior.
Selective (Focal) Neuronal Necrosis (SNN)

- Occurs in the glutamate sensitive areas in the basal ganglia, thalamus, brainstem and cortex.
- The location of the focal necrosis, which show up as cystic lesions on MRI, depend on the stage of development of the infant’s brain at the time of the HIE.
 - For example, HIE at term often produces SNN in the basal ganglia since it is glutamate sensitive and very hypermetabolic at term.
Types of Cerebral Palsy

Pyramidal
- Described as a Clasped knife response or
- Velocity dependent increased resistance to passive muscle stretch
- The spasticity can be worse when the person is anxious or ill.
- The spasticity does not go away when the person is asleep.

Extrapyramidal
- Ataxia
- Hypotonia
- Dystonia
- Rigidity
 - The tone may increase with volitional movement, or when the person is anxious
 - During sleep the person is actually hypotonic
Anatomy of motor lesions - pyramidal system
Types of Cerebral Palsy

A. Pyramidal (Spastic)
 - Quadriplegia- all 4 extremities
 - Hemiplegia- one side of the body
 - Diplegia- legs worse than arms
 - Paraplegia- legs only
 - Monoplegia- one extremity
B. Extrapyramidal

Divided into Dyskinetic and Ataxic types

Dyskinetic
- Athetosis- slow writhing, wormlike
- Chorea- quick, jerky movements
- Choreoathetosis- mixed
- Hypotonia- floppy, low muscle tone, little movement

Ataxic CP
- Results from damage to the cerebellum
- Ataxia- tremor & drunken- like gait
Anatomy

Pyramidal

- Lesion is usually in the motor cortex, internal capsule and/or cortical spinal tracts.

Extrapyramidal

- Lesion is usually in the basal ganglia, Thalamus, Subthalamic nucleus and/or cerebellum.
Comparison of Symptoms

<table>
<thead>
<tr>
<th></th>
<th>Pyramidal</th>
<th>Extrapyramidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone</td>
<td>increased</td>
<td>alternating</td>
</tr>
<tr>
<td>Type of tone</td>
<td>spastic</td>
<td>rigid</td>
</tr>
<tr>
<td>DTR’s</td>
<td>increased</td>
<td>normal to increased</td>
</tr>
<tr>
<td>Clonus</td>
<td>Present</td>
<td>occ. present</td>
</tr>
<tr>
<td>Contractures</td>
<td>early</td>
<td>late</td>
</tr>
<tr>
<td>Primitive Reflexes</td>
<td>delayed</td>
<td>persistent</td>
</tr>
<tr>
<td>Involuntary movements</td>
<td>rare</td>
<td>frequent</td>
</tr>
</tbody>
</table>
Medical Management

Growth

- Persons with CP often have struggle to gain or maintain weight.
- Failure to Thrive is a common problem.
 - Before diagnosing Failure to thrive, an accurate Body Mass Index must be obtained, but an accurate height is difficult to obtain in a person with severe contractures.
 - In such cases, arm span calculations may be used and a growth chart is available to determine percentiles standardized to age and gender.
Extremity length growth chart
Medical Management

Orthopedic Problems

- Scoliosis
- Hip Dislocations
- Contractures
- Osteoporosis
Medical Management

Oromotor Dysfunction

- Especially common in persons with Extrapyramidal CP and Spastic quadriplegia
 - Language delay/Speech delays
 - Drooling
 - Dysphagia
 - Aspiration
Medical Management

Gastrointestinal Dysmotility

- Delayed gastric emptying
- Gastroesophageal reflux
 - Pain
 - Chronic aspiration
- Constipation

These disorders are interrelated and compound one another.
Medical Management

Spasticity Management
Management of spasticity does not fix the underlying pathology of CP, but it may decreased the sequelae of increased tone.

- Over time, the spasticity leads to:
 - musculoskeletal deformity
 - scoliosis
 - hip dislocation
 - contractures
 - Pain
 - Hygiene problems
Treatment of Spasticity

Medications

- Valium
- Dantrium
- Baclofen
- Clonidine
- Clonazepam
- BOTOX
Treatment of Dystonia

Medications-(None are very effective)

- L-Dopa- drug of choice for certain disorders
- Artane
- Anticonvulsants-for intermittent and paroxysmal dystonia
- Anti-spasticity medications-
- Haldol or Reserpine- for choreoathetosis
- Propranolol- for essential tremor
- Clonazepam or Valium- for “rubral tremors”-(course tremors of the entire arm)
- Valproic acid or clonazepam for action myoclonus- (large jerks with intentional movements)
Associated Problems

- Mental Retardation
- Communication Disorders
- Neurobehavioral
- Seizures
- Vision Disorders
- Hearing loss
- Somatosensation (skin sensation, body awareness)
- Temperature instability
- Nutrition
- Drooling
- Dentition problems
- Neurogenic bladder
- Neurogenic bowel
- Gastroesophageal reflux
- Dysphagia
- Autonomic dysfunction
Other Treatments

- Casting
- Therapeutic Electrical Stimulation
- Patterning: Doman-Delacato- *(not recommended)*
- Selective Dorsal Rhizotomy
- Massage
- Hyperbaric Oxygen
- Acupuncture
Adult Concerns

Medical

- Routine Healthcare Maintenance
- Sequelae of Spasticity
- Orthopedic Issues
- Pain Management
- Neurogenic Bowel and Bladder
- Prevention of Chronic Aspiration Management of Gastroesophageal Reflux & Complications
 - Barrett’s esophagus
 - Esophageal strictures
 - Esophageal/stomach cancer
Adult Concerns

Psychosocial

Transition from Pediatric to Adult services
Independence
 Work
 Home
Relationships
Guardianship
End of life